返回

第二十四章 这个时空,唯一的名字! (2/2)

并且有确凿证据的数学工具,凭啥因为近代憋屈的原因被迫挂在别人的名下?

原本的时空他管不着也没能力去管,但在这个时间点里,徐云不会让杨辉三角与帕斯卡共享其名!

有牛老爷子做担保,杨辉三角就是杨辉三角。

一个只属于华夏的名词!

随后徐云心中呼出一口浊气,继续动笔在上面画了几条线:

“牛顿先生,您看,这个三角的两条斜边都是由数字1组成的,而其余的数都等于它肩上的两个数相加。

从图形上说明的任一数C(n,r),都等于它肩上的两数C(n-1,r-1)及C(n-1,r)之和。”

说着徐云在纸上写下了一个公式:

C(n,r)=C(n-1,r-1) C(n-1,r)(n=1,2,3,···n)

以及......

(a b)^2= a^2 2ab b^2

(a b)^3 = a^3 3a^2b 3ab^2 b^3

(a b)^4 = a^4 4a^3b 6a^2b^2 6ab^3 b^4

(a b)^5 = a^5 5a^4b 10a^3b^2 10a^2b^3 5ab^4 b^5

在徐云写到三次方那栏时,小牛的表情逐渐开始变得严肃。

而但徐云写到了六次方时,小牛已然坐立不住。

干脆站起身,抢过徐云的笔,自己写了起来:

(a b)^6 = a^6 6a^5b 15a^4b^2 20a^3b^3 15a^2b^4 6ab^5 a^6!

很明显。

杨辉三角第n行的数字有n项,数字和为2的n-1次幂,(a b)的n次方的展开式中的各项系数依次对应杨辉三角的第(n 1)行中的每一项!

虽然这个展开式对于小牛来说毫无难度,甚至可以算是二项式展开的基础操作。

但是,这还是头一次有人如此直观的将开方数用图形给表达出来!

更关键的是,杨辉三角第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。

这对于小牛正在进行的二项式后续推导,无疑是个巨大的助力!

但是......

小牛的眉头又逐渐皱了起来:

杨辉三角的出现可以说给他打开了一个新思路,但对于他现在所卡顿的问题,也就是(P PQ)m/n的展开却并没有多大帮助。

因为杨辉三角涉及到的是系数问题,而小牛头疼的却是指数问题。

现在的小牛就像是一位骑行的老司机。

拐过一个山道时忽然发现前方百米过后一马平川,景色壮美,但面前十多米处却有一个巨大的落石堆挡路。

而就在小牛纠结之时,徐云又缓缓说了一句话:

“对了,牛顿先生,韩立爵士对于杨辉三角也有所研究。

后来他发现二项式的指数似乎并不一定需要是整数,分数甚至负数似乎也是可行的。”

“负数的论证方法他没有说明,但却留下了分数的论证方法。”

“他将其称为.....”

“韩立展开!”

.....

本章完